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Abstract 

The purpose of these lectures is to provide an introduction to the 
physics issues which are being studied in the RHIC heavy ion program. 
These center around the production of new states of matter. The 
Quark Gluon Plasma is thermal matter which once existed in the big 
bang which may be made at RHIC. The Color Glass Condensate is 
a universal form of matter which controls the high energy limit of 
strong interactions. Both such forms of matter might be produced 
and probed at RHIC. 

1 Introduction 
These lectures will introduce the listener to  the physics issues behind the 
experimental heavy ion program at RHIC. This program involves the colli- 
sions of protons on protons, deuterons on nuclei, and nuclei on nuclei. The 
collision energy is of order 200 GeV per nucleon in the center of mass. The 
goal of these experimental studies is to  produce new forms of matter. This 
may be a Quark Gluon Plasma or a Color Glass Condensate. The properties 
of these forms of matter are described below. 

The outline of these lectures is 

*Lectures Delivered at the BARC Workshop “Mesons and Quarks”, Mumbai, India; 
Ja.n.-Feb. 2003 
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0 New States of Matter 
In the first lecture I describe the new forms of matter which may be 
produced in heavy ion collisions. These are the Quark Gluon Plasma 
and the Color Glass Condensate. 

Space Time Dynamics 
This lecture describes the space-time dynamics of high energy heavy ion 
collisions. In this lecture, I illustrate how high energy density matter 
might be formed. 

0 Experiment and Theory 
In this lecture, I show how various experimental measurements might 
teach us about the properties of matter. 

0 The Color Glass Condensate 
In this lecture, some aspects of the Color Glass Condensate are devel- 
oped, in particular the renormalization group equations. 

2 Lecture I: High Density Matter 

2.1 The Goals of RHIC 
The goal of nuclear physics has traditionally been to  study matter at densities 
of the order of those in the atomic nucleus, 

E N .15 GeV/Fm3 (1) 

High energy nuclear physics has extended this study to  energy densities sev- 
eral orders of magnitude higher. This extension includes the study of matter 
inside ordinary strongly interacting particles, such as the proton and the 
neutron, and producing new forms of matter at much higher energy densities 
in high energy collisions of nuclei with nuclei, and various other probes. 

RHIC is a multi-purpose machine which can address at least three central 
issues of high energy nuclear physics. These are: 

0 The production of matter at energy densities one to two or- 
ders of magnitude higher than that of nuclear matter and the 
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study of its properties. 
This matter is at such high densities that it is only simply described in 
terms of quarks and gluons and is generically referred to as the Quark 
Gluon Plasma. The study of this matter may allow us to better under- 
stand the origin of the masses of ordinary particles such as nucleons, 
and of the confinement of quarks and gluons into hadrons. The Quark 
Gluon Plasma will be described below.[l] 

0 The study of the matter which controls high energy strong 
interact ions. 
This matter is believed to be universal (independent of the hadron), 
and exists over sizes large compared to the typical microphysics size 
scales important for high energy strong interactions. (The microphysics 
size scale here is about 1 F m  and the microphysics time scale is the 
time it takes light to fly 1 Fm, t N see.) It is called a Color 
Glass Condensate because it is composed of colored particles, evolves 
on time scales long compared to microphysics time scales and there- 
fore has properties similar to glasses, and a condensate since the phase 
space density of gluons is very high. The study of this matter may al- 
low us to better understand the typical features of strong interactions 
when they are truly strong, a problem which has eluded a basic un- 
derstanding since strong interactions were first discovered. The Color 
Glass Condensate will be described below. [2] 

0 The study of the structure of the proton, most notably spin. 

The structure of the proton and neutron is important as these particles 
form the ordinary matter from which we are composed. We would like 
to understand how valence quantum numbers such as baryon number, 
charge and spin are distributed. RHIC has an active program to study 
the spin of the proton.[3] 

Because I was asked to provide lectures on the heavy ion program at 
RHIC, I shall discuss only the first two issues. 
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2.2 The Quark Gluon Plasma 
This section describes what is the Quark Gluon Plasma, why it is important 
for astrophysics and cosmology, and why it provides a laboratory in which 
one can study the origin of mass and of confinement.[l] 

2.2.1 What is the Quark Gluon Plasma? 

Matter at low energy densities is composed of electrons, protons and neu- 
trons. If we heat the system, we might produce thermal excitations which 
include light mass strongly interacting particles such as the pion. Inside the 
protons, neutrons and other strongly interacting particles are quarks and 
gluons. If we make the matter have high enough energy density, the pro- 
tons, nucleons and other particles overlap and get squeezed so tightly that 
their constituents are free to  roam the system without being confined inside 
hadrons.[4] At this density, there is deconfinement and the system is called 
a Quark Gluon Plasma. This is shown in Fig. 1 

Quark-Gluon Plasma - Hadron Gas 

Figure 1: As the energy density is decreased, the Quark Gluon Plasma con- 
denses into a low density gas of hadrons. Quarks are red, green or blue and 
gluons are yellow. 

As the energy density gets to be very large, the interactions between the 
quarks and gluons become weak. This is a consequence of the asymptotic 
freedom of strong interactions: At short distances the strong interactions 
become weak. 

The Quark Gluon Plasma surely existed during the big bang. In Fig 2, 
the various stages of evolution in the big bang are shown. At the earliest 
times in the big bang, temperatures are of order T - 10’’ GeV, quantum 
gravity is important, and despite the efforts of several generations of string 
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Figure 2: The various forms of matter, and the types of physics which are 
probed during the big bang. 

theorists, we have little understanding. At somewhat lower temperatures, 
perhaps there is the grand unification of all the forces, except gravity. It 
might be possible that the baryon number of the universe is generated at 
this temperature scale. At much lower temperatures, of order T - 100 GeV, 
electroweak symmetry breaking takes place. It is possible here that the 
baryon asymmetry of the universe might be produced. At temperatures of 
order T N 1 GeV, quarks and gluons become confined into hadrons. This is 
the temperature range RHIC is designed to  study. At T - 1 MeV,  the light 
elements are made. This temperature corresponds to  an energy range which 
has been much studied, and is the realm of conventional nuclear physics. At 
temperatures of the order of an electron volt, corresponding to  the binding 
energies of electrons in atoms, the universe changes from an ionized gas to a 
lower pressure gas of atoms, and structure begins to form. 

Matter at such energy densities probably exists inside the cores of neutron 
The Quark Gluon Plasma is formed at energy densities of order 1 GeV/Fm3. 
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stars as shown in Fig. 3. Neutron stars are objects of about 10 K m  in ra- 

-Neutron 
Star 

Radius - 10 K n -  Central Density - 10 BaryonsEh 

Figure 3: A spinning neutron star 

dius and are composed of extremely high energy density matter. The typical 
energy density in the core is of the order of 1 GeV/Fm3, and approaches 
zero at the surface. Unlike the matter in the big bang, this matter is cold 
and has temperature small compared to  the Fermi energies of quarks. It is a 
cold, degenerate gas of quarks. At lower densities, this matter converts into 
a cold gas of nucleons. 

Hot and dense matter with energy density of order 1 GeV/Fm3, may 
have occurred in the supernova explosion which led to the neutron star’s 
formation. It may also occur in collisions of neutron stars and black holes, 
and may be the origin of the mysterious gamma ray bursters. (Gamma ray 
bursters are believed to  be starlike objects which convert of the order of their 
entire mass in to gamma rays.) 

2.2.2 

At very high energy temperatures, the coupling constant of QCD becomes 
weak. A gas of particles should t o  a good approximation become an ideal 
gas. Each species of particle contributes to  the energy density of an ideal gas 

The Quark Gluon Plasma and Ideal Gasses 
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where the - is for Bosons and the + for Fermions. The energy of each 
particle is Ei. At high temperatures, masses can be ignored, and the factor 
of rtl in the denominator turns out to make a small difference. One finds 
therefore that 

E N -  N T ~  
30 (3) 

where N is the number of particle degrees of freedom. At low temperatures 
when masses are important, only the lowest mass strongly interacting particle 
degree of freedom contributes, the pion, and the energy density approaches 
zero as E - emrnTIT. For an ideal gas of pions, the number of pion degrees of 
freedom are three. For a quark gluon plasma there are two helicities and eight 
colors for each gluon, and for each quark, three colors, 2 spins and a quark- 
antiquark pair. The number of degrees of freedom is N N 2 x 8 + 4 x 3 x Np 
where NF is the number of important quark flavors, which is about 3 if the 
temperature is below the charm quark mass so that N N 50. 

There is about an order of magnitude change in the number of degrees of 
freedom between a hadron gas and a Quark Gluon Plasma. This is because 
the degrees of freedom of the QGP include color. In the large Ncolor limit, 
the number of degrees of freedom of the plasma are proportional to NZoolor, 
and in the confined phase is of order 1. In this limit, the energy density has 
an infinite discontinuity at the phase transition. There would be a limiting 
temperature for the hadronic world in the limit for which Ncolor 3 00, since 
at some temperature the energy density would go to infinity. This is the 
Hagedorn limiting temperature. (In the real world Ncolor is three, and there is 
a temperature at which the energy density changes by an order of magnitude 
in a narrow range.) 

2.2.3 The Quark Gluon Plasma and Fundamental Physics Issues 

The nature of matter at high densities is an issue of fundamental interest. 
Such matter occurred during the big bang, and it is the ultimate and universal 
state of matter at very high energy densities. 
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A hypothetical phase diagram for QCD is shown in Fig. 4. The vertical 
axis is temperature, and the horizontal is a measure of the matter or baryon 
number density, the baryon number chemical potential.[5] The solid lines in- 
dicate a first order phase transition, and the dashed line a rapid cross over. 
It is not known for sure whether or not the region marked cross over is or 
is not a true first order phase transition. There are analytic arguments for 
the properties of matter at high density, but numerical computation are of 
insufficient resolution. At high temperature and fixed baryon number den- 
sity, there are both analytic arguments and numerical computations of good 
quality. At high density and fixed temperature, one goes into a supercon- 
ducting phase, perhaps multiple phases of superconducting quark matter. At 
high temperature and fixed baryon number density, the degrees of freedom 
are those of a Quark Gluon Plasma. 

The Evolving QCD Phase Transition 
t - 1980 

Quark Gluon Critjcal Temperature I50 - 200 M ~ V  ( PB = 0 
plasma Critical Density 1/2-2 Baryons/T"vn3 (T= 0 1 

Hadron Gas 

T 

b 
t - 2000 t-1990 

Quark Gluon 
Plasma 

Hadron Gas 

PB h3 

Figure 4: A phase diagram for QCD collisions. 

I have shown this phase diagram as a function of time. What this means 
is that at various times people thought they knew what the phase diagram 
was. As time evolved, the picture changed. The latest ideas are marked with 
the date 2000. The point of doing this is to illustrate that theoretical ideas 
in the absence of experiment change with time. Physics is essentially an 
experimental science, and it is very difficult to appreciate the richness which 
nature allows without knowing from experiment what is possible. 
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Much of the information we have about QCD at finite energy density 
comes from lattice gauge theory numerical simulation.[5] To see how lattice 
gauge theory works, recall that at finite temperature, the Grand Canonical 
Ensemble is given by 

2 = T r  empH (4) 

This is similar to computing 

where -it = p. That is we compute the expectation value of the time evolu- 
tion operator for imaginary time. This object has a path integral represen- 
tation, which has been described to you in your elementary field theory text 
books. Under the change of variables, the action becomes is = i J d t L  + 
S = - J/ drL. Here L is the Lagrangian. 

The Grand Canonical Ensemble has the representation 

for a system of pure gluons. The gluon fields satisfy periodic boundary con- 
ditions due to the trace in the definition of the Grand Canonical Ensemble. 
(Fermions may also be included, although the path integral is more compli- 
cated, and the fermion fields are required to satisfy antiperiodic boundary 
conditions.) Expectation values are computed as 

T r  Oe-pH 
T r  e-pH 

< O > =  

The way that lattice Monte Carlo simulates 
semble is by placing all of the fields on a finite 

(7) 

the Grand Canonical En- 
grid, so the path integral 

becomes finite dimensional. Then field configurations are selectively sam- 
pled, as weighted by their action. This works because the factor of e-BH is 
positive and real. (The method has essential complications for finite density 
systems, since there the action becomes complex.) 

Lattice gauge theory numerical studies, and analytic studies have taught 
us much about the properties of these various phases of matter.[5] There have 
been detailed computations of the energy density as a function of tempera- 
ture. In Fig. 5 the energy density scaled by T4 is plotted. This is essentially 

9 



1 E m 4  

- 13-15 

Tc- 160 - 190 MeV T-13Tc 

Figure 5: The energy density scaled by T4 as a function of temperature. 

the number of degrees of freedom of the system as function of T.  At a tem- 
perature of T, N 160 - 190 MeV the number of degrees of freedom changes 
very rapidly, possibly discontinuously. This is the location of the transition 
from the hadron gas to the quark gluon plasma. 

In Fig. 6, the sound velocity is plotted as a function of temperature. 
The sound velocity increases at high temperature asymptoting to its ideal 
gas value of v,,,,~ N 113. Near the phase transition, it become very small. 
This is because the energy density jumps at the transition temperature, but 
the pressure must be smooth and continuous. The sound velocity squared is 
d c / d P .  

Lattice Monte-Carlo simulation has also studied how the phase transition 
is related to the confining force. In a theory with only gluons, the potential 
for sources of fundamental representation color charge grows linearly in the 
confined phase. (With dynamical fermions, the potential stops rising at some 
distance when it is energetically favorable to produce quark-antiqaurk pairs 
which short out the potential.) 

We can understand how confinement might disappear at high tempera- 
ture. A finite temperature, there is a symmetry of the pure gluon Yang-Mills 
system. Consider a Wilson line which propagates from (O,?) to the point 

2 
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Figure 6: The sound velocity as a function of temperature. 

(p, Z) A Wilson line is a path ordered phase, 

One can show that the expectation value of this line gives the free energy of 
an isolated quark: 

Now consider gauge transformations which maintain the periodic boundary 
conditions on the gauge fields (required by the trace in the definition of the 
Grand Canonical Ensemble). The most general gauge transformation which 
does this is not periodic but solves 

u(p, Z) = ZU(0,Z)  (10) 

One can show that [z,P] = 0, and that ViZ = 0. Z is an element of the 
gauge group so that detZ = 1. These conditions require that 

(11) . z = e2ni.i/Nc 
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This symmetry under non-periodic gauge transformations is global, that 
is it does not depend upon the position in space. It may be broken. If it is 
realized, the free energy of a quark must be infinite since L + Z L  under this 
transformation, and < L >= 0. If the symmetry is broken, quarks can be 
free. 

Lattice gauge computations have measured the quark-antiquark potential 
as a function of T ,  and at the deconfinement temperature, the potential 
changes from linear at infinity to constant. This is shown in Fig. 7. 

Figure 7: The potential in pure gauge theory as a function of temperature. 

In addition to confinement-deconfinement, there is an additional symme- 
try which might become realized at high temperatures. In nature, the up 
and down quark masses are almost zero. This leads to a chiral symmetry, 
which is the rotation of fermion fields by eiY5'. This symmetry if realized 
would require that either baryons are massless or occur in parity doublets. 
Neither is realized in nature. The nucleon has a mass of about 1 GeV and 
has no opposite parity partner of almost equal mass. It is believed that this 
symmetry becomes broken, and as a consequence, the nucleon acquires mass, 
and that the pion becomes an almost massless Goldstone boson. It turns out 
that at the confinement-deconfinement phase transition, chiral symmetry is 
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restored. This is seen in Fig. 8, where a quantity proportional to the nucleon 
mass is plotted as a function of T. 

Massive Nucleon 
Massless Pion 

1- 

<mJ >vat 

SniaU Mass Quarks 

I 

T 
Tc 

Figure 8: The chiral order parameter < Gli? > as a function of temperature. 

The chiral symmetry restoration phase transition can have interesting 
dynamical consequences. In the confined phase, the mass of a nucleon is 
of order NJQCO, but in the deconfined phase is of order T .  Therefore in 
the confined phase, the Boltzman weight e-fif/T is very small. Imagine what 
happens as we go through the phase transition starting at a temperature 
above T,. At first the system is entirely in QGP. As the system expands, 
a mixed phase of droplets of QGP and droplets of hadron gas form. The 
nucleons like to stay in the QGP because their Boltzman weight is larger. 
As the system expands further, the droplets of QGP shrink, but most of the 
baryon number is concentrated in them. At the end of the mixed phase, one 
has made large scale fluctuations in the baryon number. This scenario is 
shown in Fig. 9 

The confinement-deconfinement phase transition and the chiral symme- 
try restoration phase transition might be logically disconnected from one 
another. The confinement-deconfinement phase transition is related to a 
symmetry when the quark masses are infinite. The chiral transition is re- 
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Figure 9: Formation of large scale baryon number fluctuations at the QCD 
phase transition. 

lated to  a symmetry when the quarks are massless. As a function of mass, 
one can follow the evolution of the phase transitions. At large and small 
masses there is a real phase transition marked by a discontinuity in physical 
quantities.’ At intermediate masses, there is probably a rapid transition, but 
not a real phase transition. It is believed that the real world has masses 
which make the transition closer to  a crossover than a phase transition, but 
the evidence from lattice Monte-Carlo studies is very weak. In Fig. 10, the 
various possibilities are shown. 

2.3 The Color Glass Condensate 
This section describes what is the Color Glass Condensate, and why it is im- 
portant for our understanding of basic properties of strong interactions. [a ] ,  [6] 
I argue that the Color Glass Condensate is a universal form of matter which 
controls the high energy limit of all strong interaction processes and is the 
part of the hadron wavefunction important at such energies. Since the Color 
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Figure 10: The phase diagram of QCD as a function of fermion mass. 

Glass Condensate is universal and controls the high energy limit of all strong 
interactions, it is of fundamental importance. 

2.3.1 What is the Color Glass Condensate? 

The Color Glass Condensate is a new form of matter which controls the high 
energy limit of strong interactions. It is universal and independent of the 
hadron which generated it. It should describe 

0 High energy cross sections 

0 Distributions of produced particles 

0 The distribution of the small x particles in a hadron 

0 Initial conditions for heavy ion collisions 

Because this matter is universal, it is of fundamental interest. 
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A very high energy hadron has contributions to its wavefunction from 
gluons, quarks and anti-quarks with energies up to that of the hadron and 
all the way down to energies of the order of the scale of light mass hadron 
masses, E N 200 MeV. A convenient variable in which to think about these 
quark degrees of freedom is the typical energy of a constituent scaled by that 
of the hadron, 

Clearly the higher the energy of the hadron we consider, the lower is the 
minimum x of a constituent. Sometimes it is also useful to consider the 
rapidity of a constituent which is y N Zn(l/x> 

The density of small x partons is 

The scale Q2 appears because the number of constituents one measures de- 
pends (weakly) upon the resolution scale of the probe with which one mea- 
sures. (Resolution scales are measured in units of the inverse momentum 
of the probe, which is usually taken to  be a virtual photon.) A plot of 
xG(x, Q 2 )  for gluons at various x and Q2 measured at the HERA accelerator 
in protons[7], and is shown in Fig. 11. 

Note that the gluon density rises rapidly at small x in Fig. [7]. This is 
the so called small x problem. It means that if we view the proton head on at 
increasing energies, the low momentum gluon density grows. This is shown 
in Fig. 12. 

As the density of gluons per unit area per unit rapidity increases, the 
typical transverse separation of the gluons decreases. This means that the 
matter which controls high energy strong interactions is very dense, and it 
means that the QCD interaction strength, which is usually parameterized by 
the dimensionless scale as becomes small. The phase space density of these 
gluons, p N l/nR2 dN/d2pT can become at most l / a ,  since once this density 
is reached gluon interactions are important. This is characteristic of Bose 
condensation phenomena which are generated by an instability proportional 
to the density p and is compensated by interactions proportional to  asp2, 
which become of the same order of magnitude when p - l /as  Thus the 
matter is a Color Condensate. 
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Figure 11: The number of 
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gluons in a proton per unit rapidity at various 
rapidities and Q2 resolutions. 

The glassy nature of the condensate arises because the fields associated 
with the condensate are generated by constituents of the proton at higher 
momentum. These higher momentum constituents have their time scales 
Lorentz time dilated relative to  those which would be measured in their rest 
frame. Therefore the fields associated with the low momentum constituents 
also evolve on this long time scale. The low momentum constituents are 
therefore glassy: their time evolution scale is unnaturally long compared to  
their natural time scale. Hence the name Color Glass Condensate. 

There is also a typical scale associated with the Color Glass Condensate: 
the saturation momentum. This is the typical momentum scale where the 
phase space density of gluons becomes p 5 l /as .  

.At very high momentum, the fields associated with the Color Glass Con- 
densate can be treated as classical fields, like the fields of electricity and 
magnetism. Since they arise from fast moving partons, they are plane polar- 
ized, with mutually orthogonal color electric and magnetic fields perpendic- 
ular to  the direction of motion of the hadron. They are also random in two 
dimensions. This is shown in Fig. 13. 
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Low Energy 

Figure 12: The increasing density of wee partons as the energy increases. 

2.3.2 

Like nuclei and electrons compose atoms, and nucleons and protons compose 
nuclear matter, the Color Glass Condensate is the fundamental matter of 
which high energy hadrons are composed. The Color Glass Condensate has 
the potential to allow for a first principles description of the gross or typical 
properties of matter at high energies. For example, the total cross section 
at high energies for proton-proton scattering, as shown in Fig. 14 has a 
simple form but for over 40 years has resisted simple explanation. (It has 
perhaps been recently understood in terms of the Color Glass Condensate or 
Saturation ideas.) [8]- [ 111 

The Color Glass Condensate forms the matter in the quantum mechanical 
state which describes a nucleus. In the earliest stages of a nucleus-nucleus 
collisions, the matter must not be changed much from these quantum me- 
chanical states. The Color Glass Condensate therefore provides the initial 
conditions for the Quark Gluon plasma to form in these collisions. A space- 
time picture of nucleus nucleus collisions is shown in Fig. 15. At very early 
times, the Color Glass Condensate evolves into a distribution of gluons. Later 

Why is the Color Glass Condensate Important? 
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Figure 13: The Color Glass Condensate as a high density of random gluon 
fields on a two dimensional sheet traveling near the speed of light. 

these gluons thermalize and may eventually form a Quark Gluon Plasma. At 
even later times, a mixed phase of plasma and hadronic gas may form. 

3 Lecture 11: Ultrarelativistic Nuclear Colli- 
sions. 

Heavy ion collisions at ultrarelativistic energies are visualized in Fig. 23 as 
the collision of two sheets of colored glass.[l2] 

At ultrarelativistic energies, these sheets pass through one another. In 
their wake is left melting colored glass, which eventually materializes as 
quarks and gluons. These quarks and gluons would naturally form in their 
rest frame on some natural microphysics time scale. For the saturated color 
glass, this time scale is of order the inverse saturation momentum (again, we 
convert momentum into time by appropriate uses of Planck’s constant and 
the speed of light), in the rest frame of the produced particle. When a par- 
ticle has a large momentum along the beam axis, this time scale is Lorentz 
dilated. This means that the slow particles are produced first towards the 
center of the collision regions and the fast particles are produced later further 
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Figure 14: The total cross section for high energy proton-proton interactions. 

away from the collision region. 
This correlation between space and momentum is similar to what happens 

to matter in Hubble expansion in cosmology. The stars which are further 
away have larger outward velocities. This means that this system, like the 
universe in cosmology is born expanding. This is shown in Fig. 17 

As this system expands, it cools. Presumably at some time the produced 
quarks and gluons thermalize, They then expand as a quark gluon plasma and 
eventually as some mixture of hadrons and quarks and gluons. Eventually, 
they may become a gas of only hadrons before they stop interacting and fly 
off to  detectors. 

In the last lecture, we shall describe the results from nucleus-nucleus 
collisions at RHIC in some detail. Before proceeding there, we need to  learn 
a little bit more about the properties of high energy hadrons. It is useful to 
introduce some kinematic variables which are useful in what will follow. 

The light cone momenta are defined as 

and light cone coordinates are 
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Figure 15: A space-time diagram for the evolution of matter produced in 
heavy ion collisions. 

The metric in these variables is 

p - x =p+x- + - p - ~ +  - p T *  XT 

p2 = 2p 'p -  - p2 T -  - &lf2 

(16) 

Conjugate variables are l(;* < - > pF. The square of the four momentum is 

(17) 

The uncertainty principle is 

A reason why light cone variables are useful is because in a high energy 
collision, a left moving particle has p z  N E ,  so that p+ - .\/ZE, but p-  - 
m$/pz - 0. For the right moving particles, it is p- which is big and p+ which 
is very small. 

Light cone variables scale by a constant under Lorentz transformations 
along the collision axis. Ratios of light cone momentum are therefore in- 
variant under such Lorentz boosts. The light cone momentum fraction 
x = p l / P + ,  where P+ is that of the particle we probe and p' is that 
of the constituent of the probed hadron satisfies 0 5 x 5 1. It is the 
same as Bjorken x, and for a fast moving hadron, it is almost Feynman 
xpeynrnan = Ei/E. This is the x variable one is using when one describes 
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Figure 16: The collision of two sheets of colored glass. 

deep inelastic scattering. In this case the label i corresponds to a quark or 
gluon constituent of a hadron. 

One can also define a rapidity variable: 

Up to mass effects, the rapidity is in the range --ypT0j 5 y 5 ypproj When 
particles, like pions, are produced in high energy hadronic collisions, one 
often plots them in terms of the rapidity variable. Distributions tend to be 
slowly varying functions of rapidity. 

3.1 Is There Simple Behaviour at High Energy? 
A hint of the underlying simplicity of high energy hadronic interactions comes 
from studying the rapidity distributions of produced particles for various 
collision energies. In Fig. 18, a generic plot of of the rapidity distribution of 
produced pions is shown for two different energies. The rapidity distribution 
at lower energies has been cut in half and the particles associated with each of 
the projectiles have been displaced in rapidity so that their staring points in 
rapidity are the same. It is remarkable, that except for the slowest particles 
in the center of mass frame, those located near y N 0, the distributions are 
almost identical.[l3] This is shown for the data from RHIC in Fig. 19. 

We conclude from this that going to higher energy adds in new degrees 
of freedom, the small x part of the hadron wavefunction. At lower energies, 
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Figure 17: Particles being produced after the collision of two nuclei. 

these degrees of freedom are not kinematically relevant as they can never be 
produced. On the other hand, going to higher energy leaves the fast degrees 
of freedom of the hadron unchanged. 

This suggests that there should be a renormalization group description 
of the hadrons. As we go to higher energy, the high momentum degrees 
of-freedom remain fixed. Integrating out the previous small x degrees of 
freedom should incorporate them into what are now the high energy degrees 
of freedom at the higher energy. This process generates an effective action 
for the new low momentum degrees of freedom. Such a process, when done 
iteratively is a renormalization group. 

1 

3.2 A Single Hadron 
A plot of the rapidity distribution of the constituents of a hadron, the gluons, 
is shown generically in Fig. 20. I have used y = yhadron - Zn(l/z) as my 
definition of rapidity. This distribution is similar in shape to that of the 
half of the rapidity distribution shown for hadron-hadron interactions in the 
center of mass frame which has positive rapidity. The essential difference 
that this distribution is for constituents where the hadron-hadron collision 

is 
is 
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Figure 18: The rapidity distributions of particles at two different energies. 

for produced particles, mainly pions. 
In the high energy limit, as discussed in the previous section, the density 

of gluons grows rapidly. This suggests we introduce a density scale for the 
partons 

1 dN 
rR2 dy 

A =-- 

One usually defines a saturation momentum to be Q:at - ash2, since this 
will turn out to be the typical momentum of particles in this high density 
system. In fact, Q, is slowly varying compared to the variation of A, so 
that for the purposes of the estimates we make here, whether or not there 
is a factor of a, will not be so important. Note that a, evaluated at the 
saturation scale will be Q, << 1. The typical particle transverse momenta 
are of order p$ - Q:at >> l/Riad Therefore it is consistent to think of the 
parton distribution as a high density weakly coupled system which is localized 
in the transverse plane. The high momentum partons, the degrees of freedom 
which should be frozen, can be thought of as sitting on an infinitesmally 
thin sheet. We shall study this system with a resolution size scale which is 
Ax << ~/RQ,,, so that we may use weak coupling methods. Such a thin 
sheet is shown in Fig. 21 

It is useful to discuss different types of rapidity variables before proceed- 
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Figure 19: Experimental evidence from the Phobos experiment at RHIC on 
limiting fragment ation. 

ing. The typical momentum space rapidity is 

y = f l n  (f) 

Here MT is a particle transverse mass, and we have made approximations 
which ignore overall shifts in rapidity by of order one unit. Within these ap- 
proximations, the momentum space rapidity used to describe the production 
of particles is the same as that used to describe the constituents of hadrons. 

Oftentimes a coordinate space rapidity is introduced. With 7- = I/-, 
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Figure 20: The rapidity distribution of the constituents of a hadron. 

Taking r to be a time scale of order l/A&, and using the uncertainty principle 
x* - l/pF, we find that up to shifts in rapidity of order one, all the rapidities 
are the same. This implies that coordinate space and momentum space are 
highly correlated, and that one can identify momentum space and coordinate 
space rapidity with some uncertainty of order one unit. 

If we plot the distribution of particles in hadron in terms of the rapid- 
ity variable, the longitudinal dimension of the sheet is spread out. This is 
shown in Fig. 22. The longitudinal position is correlated with the longitu- 
dinal momentum. The highest rapidity particles are the fastest. In ordinary 
coordinate space, this means the fastest particles are those most Lorentz con- 
tracted. If we now look down a tube of transverse size Ax << l / h ~ c ~ ,  we 
will intersect the various constituents of the hadron only occasionaly. The 
color charge probed by this tube should therefore be random, until the trans- 
verse size scale becomes large enough so that it can probe the correlations. 
If the beam energy is large enough, or x is small enough, there should be a 
large amount of color charge in each tube of fixed size Ax. One can therefore 
treat the color charge classically. 

The physical picture we have generated is that there should be classical 
sources of to a good approximation random charges on a thin sheet. The 
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Figure 21: A thin sheet traveling near light velocity. The transverse resolu- 
tion scale is Ax 

current for this is 

J,” = 6’+6 ( Z- ) pa (ZT) (23) 

The delta function approximation should be good for many purposes, but it 
may also be useful in some circumstances to  insert the longitudinal structure 

J,” = 6’+pa(y, xrr) (24) 

and to remember that the support of the source is for very large y. 

3.3 The Color Glass Condensate 
We now know how to  write down a theory to  describe the Color Glass Con- 
densate. It is given by the path integral[6] 

(25) 

Here S[A,p] is the Yang-Mills action in the presence of a source current as 
described above. The function W weights the various configurations of color 
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Figure 22: The distribution of particles in a hadron in terms of rapidity 
variables. 

charge. In the simplest version of the Color Glass Condensate, this can be 
taken to be a Gaussian 

In this ansatz, p2(y) is the color charge squared density per unit area per 
unit y scaled by 1/N: - 1. The theory can be generalized to less trivial forms 
of the weight function, but this form works at small transverse resolution 
scales, Ax << l /Qsat.  As one increases the transverse resolution scale one 
needs a better determination of W .  It turns out that at resolution scales of 
order l /Qsat << Ax << l/A,,,, a Gaussian form is still valid. 

The averaging over an external field makes the theory of the Color Glass 
Condensate similar to that of spin glasses. The solutions of the classical field 
equations also have F2 N l / a ,  so the gluon fields are strong and have high 
occupation number, hence the word condensate. 

The theory described above has an implicit longitudinal momentum cut- 
off scale. Particles with momentum above this scale are treated as sources, 
and those below it as fields. One computes physical quantities by first com- 
puting the classical fields and then averaging over sources p. This is a good 
approximation so long as the longitudinal momentum in the field is not too 
far below the longitudinal momentum cutoff, A+. If one computes quantum 
corrections, the expansion parameter is 
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To generate a theory at smaller momenta, x+, one first requires that 
a,ln(A+/X+) << 1. Then one computes the quantum corrections in the 
presence of an the background field. This turns out to change only the 
weight function IV. Therefore the theory maps into itself under a change of 
scale. This is a renormalization group, and it determines the weight function 
TW. [ 61, [ 141- [ 151. 

3.4 Color Glass Fields 
The form of the classical fields is easily inferred. On either side of the sheet 
the fields are zero. They have no time dependence, and in light cone gauge 
A+ = 0. It is plausible t o  look for a solution which is purely transverse. On 
either side of the sheet, we have fields which are gauge transformations of 
zero field. It can be a different gauge transformation of zero field on different 
sides of the sheet. Continuity requires that FiJ’ = 0. Fi- is zero because of 
light cone time ~1;+ independence, and the assumption that A- = 0. Pi+ is 
non zero N ~ ( L G - )  because of the variation in x- as one crosses the sheet. This 
means that Fi0 - -FiZ, or that E I B I 2. These are transversely polarized 
Weiszacker-Williams fields. They are random in the two dimensional plane 
because the source is random. This is shown in Fig. 13. The intensity of 
these fields is of order l /as ,  and they are not at all stringlike. 

3.5 The Gluon Distribution and Saturation 
The gluon distribution function is given by computing the expectation value 
of the number operator < at(p)a(p) > and can be found from computing the 
gluon field expectation value < A(p)A(-p) >. This is left as an exercise for 
the student. At large p ~ ,  the distribution function scales as 

which is typical of a Bremstrahlung spectrum At small p T ,  the solution is 
N Zn(Q~at/p$)/as. The reason for this softer behaviour at smaller pT is easy 
to understand. At small distances corresponding to  large p ~ ,  one sees point 
sources of charge, but at smaller p ~ ,  the charges cancel one another and 
lead’to a dipole field. The dipole field is less singular at large T ,  and when 
transformed into momentum space, one loses two powers of momentum in the 
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distribution function. In terms of the color field, the saturation phenomena is 
almost trivial to understand. (It is very difficult to  understand if the gluons 
are treated as incoherently interacting particles.) 

Now Q:a, can grow with energy. In fact it turns out that QS,, never stops 
growing. The intrinsic transverse momentum grows without bound. Physi- 
cally what is happening is that the low momentum degrees of freedom below 
the saturatian momentum grow very slowly, like In( because repulsive 
gluon interactions prevent more filling. On the other hand, one can always 
add more gluons at high momentum since the phase space is not filled there. 

How is this consistent with unitarity? Unitarity is a statement about 
cross sections at fixed Q2. If Q2 is above the saturation momentum, then the 
gluon distribution function grows rapidly with energy, as Q:,,. On the other 
hand, once the saturation momentum becomes larger than Q 2 ,  the number 
of gluons one can probe 

varies only logarithmically. The number of gluons scale as the surface area. 
(At high Q2, it is proportional to  R2Q:at, and one expects that &tat - All3 
so that zG(z, Q 2 )  N A 

3.6 Hadron Collisions 
In Fig. 23, the collision of two hadrons is represented as that of two sheets 

Figure 23: The collision of two sheets of colored glass. 
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of colored glass. Before the collisions, the left moving hadron has fields 

Fi+ N S(x-J 
Fij 0 

N O  pi- 

and that of the right moving fields is analogous to that of the above save that 
f -+ in the indices and coordinates of all fields. The fields are of course 
different in each nucleus. We shall consider impact parameter zero head on 
collisions in what follows. 

These fields are plane polarized and have random colors. A solution of 
the classical Yang-Mill's equation can be constructed by requiring that the 
fields are two dimensional gauge transforms of vacuum everywhere but in the 
forward light cone. At the edges of the light cone, and at its tip t = x = 0, 
the equations are singular, and a global solution requires that the fields carry 
non-trivial energy and momentum in the forward lightcone. At short times, 
these fields are highly non-linear. In a time of order T - I / Q s a t ,  the fields 
linearize. When they linearize, we can identify the particle content of the 
classical radiation field. 

This situation is much different than the case for quantum electrodynam- 
ics. Because of the gluon self-interaction, it is possible to classically convert 
the energy in the incident nuclei into radiation. In quantum electrodynam- 
ics, the charged particles are fermions, and they cannot be treated classically. 
Radiation is produced by annihilation or bremstrahlung as quantum correc- 
tions to the initial value problem. 

The solution to the field equation in the forward lightcone is approxi- 
mately boost invariant over an interval of rapidity of order A y  << l /as .  At 
large momentum, the field equations can be solved in perturbation theory 
and the distribution is like that of a bremstrahlung spectrum 

It can be shown that such a spectrum matches smoothly onto the result for 
high momentum transfer jet production. 

One of the outstanding problems of particle production is computing the 
total multiplicity of produced gluons. In the CGC description, this problem 
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is solved. When p~ 5 Qsat, non-linearities of the field equations become 
important, and the field stops going as l/p$. Instead it becomes of order 

The total multiplicty is therefore of order 

If Q:,, - A1/3, then the total multiplicty goes as A, the high pT differential 
multiplicity goes as A4j3, as we naively expect for hard processes since they 
should be incoherent , and the low momentum differential multiplicity goes 
as A2I3, since these particles arise from the region where the hadrons are 
black disks and the emission should take place from the surface. 

In Fig. 24, the various kinematic regions for production of gluons are 
shown. In Fig. 25, the results of numerical simulation of gluon production 

I t 
I 

"QCD Qsat PT 

Figure 24: A cartoon representation of the various kinematic regions of gluon 
production. 

are shown. At small p T ,  it is amusing that the distribution is well described 
by a two dimensional Bose-Einstein distribution. This is presumably a nu- 
merical accident, and in this computation has absolutely nothing to do with 
thermalized distributions. 
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Figure 25: The numerically computed distribution of produced gluons. 

3.7 Thermalization 
As shown in Fig. 17, in a heavy ion collision, the slow particles are produced 
first near the collision point and the slow particles are produced later far 
from the collision point. This introduces a gradiant into the initial matter 
distribution, and the typical comoving volume element expands like 1/r. To 
understand the factor of 1/r in the above equation, note that if we convert 
d N / d z  = d N / d y  d y / d z  = d N / d y  l/t, where we used our previous definition 
of space-time rapidity, and where we evaluated at z = 0. This is the physical 
rest frame density at z = 0. 

If entropy is conserved, as is the case for thermalized system with expan- 
sion time small compared to  collision time, 

S - T3rR2 (35) 

is fixed so that T - l /d3.  Therefore for a thermalized system, the energy 
density decreases as E N 1/7-4/3, where for system with no scattering so that 
the typical transverse momentum does not change, E - 1/r. 

For the initial conditions typical of a Color Glass Condensate, thermal- 
ization is not so easy to do.1161 At the earliest times, the typical transverse 
momentum is large, of order of the saturation momentum. At this scale, the 
coupling is weak a,(Qsat) << 1, at least for asymptotically large energy. 

To estimate the typical scattering time, we need to know the density and 
the mean free path. At early times, the density is that in the transverse 
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space diluted by the longitudinal expansion of the system, 

p =< p$ > / r  

The scattering cross section is on the other hand o - azZn(p)/ < p$ >. The 
logarithmic cutoff comes about from Debye screening the Coulomb cross 
section. (The linear divergence can be shown to cancel for thermalization 
processes.) 

Thermalization requires that r >> rsscat, since r itself is the characteristic 
expansion time. This requires that 

For practical purposes and for weakly coupled systems, there is never ther- 
malization by elastic scattering! 

Thermalization, if it in fact occurs, takes place by inelastic scattering. 
The physics of what is happening is easy to understand. Because the system 
begins its evolution with p~ at such a large typical scale Qsat, the coupling 
is weak and the system does not easily thermalize by elastic scattering. It 
therefore expands and becomes an overly dilute compared to the typical den- 
sity associated with the transverse momentum scale p$. When a system is 
overly dilute, the Debye screening length becomes very large. Multigluon pro- 
duction processes can be shown to diverge like the Debye screening length, 
whereas elastic processes only diverge like the logarithm of this length. There- 
fore, when the Debye screening length is of order l /as ,  multigluon production 
begins to become more important than elastic scattering. This happens. at a 
time r - l/(a,Qsat). 

The details of how this thermalization occurs have not been fully worked 
out in detail. Current estimates of the time of thermalization matter pro- 
duced in heavy ion collisions at RHIC energies ranges from .3 < r < 3 Frn/c. 

4 Lecture 3: What We Have Learned from 
RHIC 

In this lecture, I review results from RHIC and describe what we have so far 
learned about the production of new forms of matter in heavy ion collisions. 
I will make the case t$hat we have produced matter of extremely high energy 
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density, so high that it is silly not to think of it as composed of quarks and 
gluons. I also will argue that this matter is strongly interacting with itself. 
The issue of the properties of this matter is still largely unresolved. For ex- 
ample whether the various quantities measured are more properly described 
as arising from a Color Glass Condensate or from a Quark Gluon Plasma, 
although we can easily understand in most cases which form of matter should 
be most important. 

4.1 
The particle multiplicity as a function of energy has been measured at RHIC, 
as shown in Fig. 26. Combining the multiplicity data together with the 

The Energy Density is Big 

.. .. . .. .... .... .. .... . . 

nucl-exl616~~69 
Submitted to PRL 

PHOBOS 200 PHOBOS 2130 GeV 
AHlC comb. 130 GeV 
PHOBOS 56 GeV 
NA4S (SPS) 

Figure 26: The particle multiplicity as a function of energy as has been 
measured at RHIC. 

measurements of transverse energy or of typical particle transverse momenta, 
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one can determine the energy density of the matter when it decouples.[17] 
One can then extrapolate backwards in time. We extrapolate backwards 
using 1 dimensional expansion, since decoupling occurs when the matter 
first begins to expands three dimensionally. We can extrapolate bacltwards 
until the matter has melted from a Color Glass. 

To do this extrapolation we use that the density of particles falls as 
N / V  - l/t  during 1 dimensional expansion. If the particles expand without 
interaction, then the energy per particle is constant. If the particles thermal- 
ize, then E / N  - T ,  and since N/V - T3 for a massless gas, the temperature 
falls as T - t- l l3.  For a gas which is not quite massless, the temperature 
falls somewhere in the range To > T > T0(t0/t)1/3, that is the temperature 
is bracketed by the value corresponding to no interaction and to that of a 
massless relativistic gas. This 1 dimensional expansion continues until the 
system begins to feel the effects of finite size in the transverse direction, and 
then rapidly cools through three dimensional expansion. Very close to when 
three dimensional expansion begins, the system decouples and particles free 
stream without further interaction to detectors. We shall take a conservative 
overestimate of this time to be of order tmelt - .3 F m / c  The extrapolation 
backwards is bounded by c f ( t f / t )  < ~ ( t )  < ~ f ( t f / t ) ~ / ~ .  The lower bound is 
that assuming that the particles do not thermalize and their typical energy 
is frozen. The upper bound assumes that the system thermalizes as an ideal 
massless gas. We argued above that the true result is somewhere in between. 
When the time is as small as the melting time, then the energy density begins 
to decrease as time is further decreased. 

This bound on the energy density is shown in Fig. 27. On the left axis is 
the energy density and on the bottom axis is time. The system begins as a 
Color Glass Condensate, then melts to Quark Gluon Matter which eventually 
thermalizes to a Quark Gluon Plasma. At a time of a few Fm/c ,  the plasma 
becomes a mixture of quarks, gluons and hadrons which expand together. 

At a time of about 10 Fm/c ,  the system falls apart and decouples. At a 
time o f t  N 1 Fm/c,  the estimate we make is identical to the Bjorken energy 
density estimate, and this provides a lower bound on the energy density 
achieved in the collision. (All estimates agree that by a time of order 1 Fm/c ,  
matter has been formed.) The upper bound corresponds to assuming that the 
system expands as a massless thermal gas from a melting time of .3 Fm/c .  
(If the time was reduced, the upper bound would be increased yet further.) 

36 



lo1 
E 

(GeVIFm 3, 

loo 

Energy Density 
-+ - 20-30 times 

that inside a 
proton 

I I I 
1 

l b  101 lo -l t (Fm/c) 

Figure 27: Bounds on the energy density as a function of time in heavy ion 
collisions. 

The bounds on the energy density are therefore 

2 - 3 GeV/Fm3 < E < 20 - 30 GeV/Fm3 (38) 

where we included a greater range of uncertainty in the upper limit because 
of the uncertainty associated with the formation time. The energy density of 
nuclear matter is about 0.15 GeV/Fm3, and even the lowest energy densities 
in these collisions is in excess of this. At late times, the energy density is 
about that of the cores of neutron stars, E - 1 GeV/Fm3. 

At such extremely high energy densities, it is silly to  try to  
describe the matter in terms of anything but its quark and gluon 
degrees of freedom. 

Energy Density 
incores 

of Neutron Stars 
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Figure 28: The CGC description of the participant dependence of L e  multi- 
plicity of produced particles. 

4.2 The Gross Features of Multiplicity Distributions 
Are Consistent with Colored Glass 

As argued by Kharzeev and Nardi,[l8] the density of produced particles per 
nucleon which participates in the collision, Npart, should be proportional to 
l/a3(Qsat), and Qsat N Npart. This dependence follows from the l /a8 which 
characterizes the density of the Color Glass Condensate. In Fig. 28, we show 
the data from PHENIX and PHOBOS[19]. The Kharzeev-Nardi form fits the 
data well. Other attempts such as HIJING[20], or the so called saturation 
model of Eskola-Kajantie-Ruuskanen-Tuominen[21] are also shown in the 
figure. 

Kharzeev and Levin have recently argued that the rapidity distribu- 
tions as a function of centrality can be computed from the Color Glass 
description.[22] This is shown in Fig. 29.[23] 
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Figure 29: Color glass condensate fits to the rapidity density measured in 
the PHOBOS and Brahms experiments 

4.3 Matter Has Been Produced which Interacts Strongly 
with Itself 

In off zero impact parameter heavy ion collisions, the matter which overlaps 
has an asymmetry in density relative to the reaction plane. This is shown in 
the left hand side of Fig. 30. Here the reaction plane is along the x axis. In 
the region of overlap there is an z - y asymmetry in the density of matter 
which overlaps. This means that there will be an asymmetry in the spatial 
gradients which will eventually transmute itself into an asymmetry in the 
momentum space distribution of particles, as shown in the right hand side 
of Fig. 30. This asymmetry is called elliptic flow and is quantified by the 
variable 212. In all attempts to theoretically describe this effect, one needs 
very strong interactions among the quarks and gluons at very early times in 
the collision.[24]. In Fig. 31, two different theoretical descriptions are fit to 
the data by STAR and PHOBOS[25]-[26]. On the left hand side, a hydro- 
dynamical model is used.[27] It is roughly of the correct order of magnitude 
and has roughly the correct shape to fit the data. This was not the case 
at lower energy. On the right hand side are preliminary fits assuming Color 
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Figure 30: The asymmetry in the distribution of matter in an off center 
collision is converted to an asymmetry of the momentum space distribution. 

Glass.[28J Again it has roughly the correct shape and magnitude to describe 
the data. In the Color Glass, the interactions are very strong essentially from 
t = 0, but unlike the hydrodynamic models it is field pressure rather than 
particle pressure which converts the spatial anisotropy into a momentum 
space- anisotropy. 

Probably the correct story for describing flow is complicated and will in- 
volve both the Quark Gluon Plasma and the Color Glass Condensate. Either 
description requires that matter be produced in the collisions and that it in- 
teracts strongly with itself. In the limit of single scatterings for the partons 
in the two nuclei, no flow is generated. 
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4.4 
4.4.1 Does the Matter Equilibrate? 

One of the most interesting results from the RHIC experiments is the so 
called “jet quenching” .[29]-[30]. In Fig. 32a, the single particle hadron spec- 
trum is scaled by the same result in p p  collisions and scaled by the number 
of collisions. The number of collisions is the number of nucleon-nucleon in- 

What Do We Expect to Learn? 
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Figure 32: a) The p~ distribution of particles scaled by the data from p p  col- 
lisions times the number of hard collisions inside the nuclei. b) A pair of jets 
is produced in a hard collision and they propagate through the surrounding 
matter. 

teractions, which for central collisions should be almost all of the nucleons. 
One is assuming hard scattering in computing this number, so that a single 
nucleon can hard scatter a number of times as it penetrates the other nucleus. 
The striking feature of this plot is that the ratio does not approach one at 
large p ~ .  This would be the value if these particles arose from hard scattering 
which produced jets of quarks and gluons, and the jets subsequently decayed. 

The popular explanation for this is shown in Fig. 32b. Here a pair of 
jets is produced in a gluon-gluon collision. The jets are immersed in a Quark 
Gluon Plasma, and rescatter as they poke through the plasma. This shifts 
the transverse momentum spectrum down, and the ratio to p p  collisions, 
where there is no significant surrounding media, is reduced. 

The data, however suggestive, need to be improved before strong conclu- 
sions are drawn. For example, there are large systematic uncertainties in the 
p p  data which was measured in different detectors and extrapolated to RHIC 
energy. This will be resolved by measuring p p  collisions at RHIC. There is in 
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addition some significant uncertainty in the AA data which becomes smaller 
in the ratio to p p  data when the data is measured in the same detector. 
There are nuclear modifications of the gluon distribution function, an effect 
which can be determined by measurements on pA at RHIC. The maximum 
transverse momentum is limited by the event sample size, and the size will 
be greatly improved with this years run due to the higher luminosity and 
longer run time. 

(After these lectures were given, results were presented from the dA ex- 
periments at RHIC. The experimenters claim that the initial state effects are 
disfavored as an explanation for the jet quenching seen in the Au-Au colli- 
sions. For a summary of their conclusions, please look at the power point 
presentations on the RHIC homepage, or the submitted papers.[31] It is the 
authors opinion that much more needs be done before this conclusions can 
be firmly established.) 

One of the reasons why jet quenching is so important for the RHIC pro- 
gram is that it gives a good measure of the degree of thermalization in the 
collisions. If jets are strongly quenched by transverse momenta of 4 GeV, 
then because cross sections go like 1/E2 for quarks and gluons, this would be 
strong evidence for thermalization at the lower energies typical of the emitted 
particles. 

One can look for evidence of thermalization directly from the measured 
p~ distributions. Here one can do a hydrodynamic computation and in so 
far as it agrees with the results, one is encouraged to believe that there is 
thermalization. On the other hand, these distributions may have their origin 
in the initial conditions for the collision, the Colored Glass. In reality, one 
will have to understand the tradeoff between both effects. The hydrodynamic 
models do a good job in describing the data for p~ 5 2 GeV, Here there is 
approximate mT scaling, a characteristic feature of hydrodynamic compu- 
tations. This scaling arises naturally because in hydrodynamic distribution 
are produced by flowing matter which has a characteristic transverse flow 
velocity with a well defined local temperature. Particles with the same mT 

should have arisen from regions with the same transverse flow velocity and 
temperature. 

Hydrodynamical models successfully describe the data on mT 

distributions.[32] In Fig. 33 the results of the simulation by Shuryak and 
Teaney are shown compared to the STAR and PHENIX data.[29]-[30] The 
shape of the curve is a prediction of the hydrodynamic model, and is param- 
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Figure 33: The hydrodynamical model fits to the mT spectra for the PHENIX 
and STAR data. 

eterized somewhat by the nature of the equation of state. Notice that the 
STAR data include protons near threshold, and here the mT scaling breaks 
down. The hydrodynamic fits get this dependence correctly, and this is one 
of the best tests of this description. The hydrodynamic models do less well 
on fits to the more peripheral collisions. In general, a good place to test the 
hydrodynamic models predictions is with massive particles close to thresh- 
old, since here one deviates in a computable way from the mT scaling curve, 
which is arguably determined from parameterizing the equation of state. 

If one can successfully argue that there is thermalization in the RHIC 
collisions, then the hydrodynamic computations become compelling. One 
should remember that hydrodynamics requires an equation of state plus ini- 
tial conditions, and these initial conditions are determined by Colored Glass. 
Presumably, a correct description will require the inclusion of both types of 
effects.[33] 
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4.4.2 

We would like to know whether or not deconfinement has occurred in dense 
matter or whether chiral symmetry restoration has changed particle masses. 

Confinement aad Chiral Symmetry Restoration 

0 
0 
7 v 

2 10 
P 

10 

10 

CERESlNA45 S-Au 200 GeVIu 
2.1 c q e 2.65 
p, z 200 MeV/c 
O,, > 35 mrad 

mae (GeV/c2) 

Figure 34: The CERES data on low mass electron-positron pairs. The ex- 
pected contribution from ordinary hadrons is shown by the solid line. The 
data points are for the measured electron-positron pairs. 

This can be studied in principle by measuring the spectrum of dileptons 
emitted from the heavy ion collision. These particles probe the interior of the 
hot matter since electromagnetically interacting particles are not significantly 
attenuated by the hadronic matter. For electron-positron pairs, the mass 
distribution has been measured in the CERES experiment at CERN[34], and 
is shown in Fig. 34: Shown in the plot is the distribution predicted from 
extrapolating from pA collisions. There should be a clear p and q5 peak, which 
has disappeared. This has been interpreted as a resonance mass shift,[35], 
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enhanced 7' production, [36] but is most probably collisional broadening of 
the resonances in the matter produced in the collisions.[37] Nevertheless, if 
one makes a plot such as this and the energy density is very high and there 
are no resonances at all, then this would be strong evidence that the matter 
is not hadronic, i. e. the hadrons have melted. 

The resolution in the CERES experiment is unpleasantly large, making 
it difficult to unambiguously interpret the result. Whether or not such an 
experiment could be successfully run at RHIC, much less whether the reso- 
lution could be improved, is the subject of much internal debate among the 
RHIC experimentalists. 

4.4.3 Confinement and J / Q  Suppression 

In Fig. 35, the NA(50) data for J / Q  production is shown.[38] In the first fig- 
ure, the ratio of J / Q  production cross section to that of Drell-Yan is shown as 
a function of ET, the transverse energy, for the lead-lead collisions at CERN. 
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Figure 35: a) The ratio of produced J / Q  pairs to Drell-Yan pairs as a function 
of transverse energy ET at CERN energy. b) The measured compared to the 
theoretically expected J/Q suppression as a function of the Bjorlen energy 
density for various targets and projectiles. 

There is a clear suppression at large ET which is greater than the hadronic 
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absorption model calculations which are plotted with the data.[39] In the 
next figure, the theoretically expected J / Q  suppression based on hadronic 
absorption models is compared to that measured as a function of the Bjorken 
energy density for various targets and projectiles. There appears to be a 
sharp increase in the amount of suppression for central lead-lead collisions. 

Is this suppression due to Debye screening of the confinement potential in 
a high density Quark Gluon Plasma?[40]-[42] Might it be due higher twists, 
enhanced rescattering, or changes in the gluon distribution function?[43]- 
[44] Might the J / $  suppression be changed into an enhancement at RHIC 
energies and result from the recombination in the produced charm particles, 
many more of which are produced at RHIC energy?[45]-[48] 

These various descriptions can be tested by using the capability at RHIC 
to do p p  and pA as well as AA. Issues related to multiple scattering, higher 
twist effects, and changes in the gluon distribution function can be explored. 
A direct measurement of open charm will be important if final state recom- 
bination of the produced open charm makes a significant amount of J/9’s.  

4.4.4 The Lifetime and Size of the Matter Produced 

The measurement of correlated pion pairs, the so called HBT pion inter- 
ferometry, can measure properties of the space-time volume from which the 
hadronic matter emerges in heavy ion collisions. [49] The quantities Rlong, R s i d e  

and Rout shown in Fig. 36 measure the transverse size of the matter at de- 
coupling and the decoupling time. 

In Fig. 37, the data from STAR and PHENIX is sho.vvn.[50]-[51] There 
is only a weak dependence on energy, and the results seem to be more or 
less what was observed at CERN energies. This is a surprise, since a longer 
time for decoupling is expected at RHIC. Perhaps the most surprising result 
is that Rout/Rside is close to 1, where most theoretical expectations give a 
value of about Rout/Rside - 2.[52]-[53] Perhaps this is due to greater than 
expected opacity of the emitting matter? At this time, there is no consistent 
theoretical description of the HBT data at RHIC. Is there something missing 
in our space-time picture? 
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' Figure 36: The various radii used for HBT pion interferometry. 

4.4.5 The Flavor Composition of the Quark Gluon Plasma 

The first signal proposed for the existence of a Quark Gluon Plasma in heavy 
ion collisions was enhanced strangeness production.[54] This has lead to a 
comprehensive program in heavy ion collisions to measure the ratios of abun- 
dances of various flavors of particles.[55]. In Fig. 38a, the ratios of flavor 
abundances is compared to a thermal model for the particle abundances.[56] 
- [58] The fit is quite good. In Fig. 38b, the temperature and baryon chem- 
ical potential extracted from these fits is shown for experiments at various 
energies and with various types of nuclei. It seems to agree reasonably well 
with what might be expected for a phase boundary between hadronic matter 
and a Quark Gluon Plasma. 

This would appear to be a compelling case for the production of a Quark 
Gluon Plasma. The problem is that the fits done for heavy ions to particle 
abundances work even better in e+e- collisions. One definitely expects no 
Quark Gluon Plasma in e+e- collisions. There is a deep theoretical question 
to be understood here: How can thermal models work so well for non-thermal 
systems? Is there some simple saturation of phase space? The thermal model 
description can eventually be made compelling for heavy ion collisions once 
the degree of thermalization in these collisions is understood. 

47 



0.5 
- 8  
E 
0 6  a 
r; 

P 8  
!h 

a - 6  

4 

L 25 

Figure 37: a) The various HBT radii measured in heavy ion experiments 
including the new data from STAR. b) The correlation functions which de- 
termine the radii as a function of the pair momenta measured in PHENIX. 

5 Lecture 4: The Physics of the Color Glass 
Condensat e 

In this lecture, I discuss some of the implications of the Color Glass Con- 
densate. I begin by developing in a little more detail the solutions for the 
fields of the Color Glass Condensate for a single hadron. I then discuss is- 
sues related to  unitarity for electromagnetic probes of hadrons. I later argue 
that Froissart bound saturation for the total cross section in hadron-hadron 
scattering also arises naturally in the context of the Color Glass Conden- 
sate. Next, I show that a new scale appears in the gluon structure function 
and which corresponds to  a new kind of Geometrical Scaling of high energy 
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Figure 38: a) Various ratios of particle abundances and the RHIC data. The 
lines are the predictions of a thermal model. b) The temperature vs baryon 
chemical potential for a thermal model which is fit to data at various energies. 
The dashed line is a hypothetical phase boundary between a Quark Gluon 
Plasma and a hadronic gas. 

deep inehstic scattering. This scaling implies that there is a form of mat- 
ter intermediate between the highly coherent Color Glass Condensate and 
the incoherent parton densities of perturbative QCD. Finally, I discuss the 
renormalization group and its implications for the high energy limit. 

5.1 
In light cone coordinates, the initial value problem is formulated along the 
surface z+ = 0, and propagation is in terms of the light cone time zs. This 
is shown in Fig. 39. 

Quantization of fields in light cone coordinates is most easily illustrated 
for the Klein-Gordon field. The equation of motion is 

Formal Development: Light Cone Quantization 

or 
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x + = o  

Figure 39: The initial value problem in lightcone coordinates. The light cone 
is shown and propagation from initial conditions at x+ = 0 is shown. 

Since p-  = id/@-, the first quantized Hamiltonian corresponding to  this 
equation is 

To second quantize this system, we consider the action 

S =  d4x- - M 2 4 2 )  I :( 
The canonical momentum is 

Note that the momentum IT is on the same equal time surface as is 4, and 
therefore it is not a variable independent of 4. The momentum and coordi- 
nate are constrained, and therefore the quantization is subtle. 
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If we postulate the equal-time commutation relations 

we see that 

or that 

(44) 

(45) 

One can check that these commutation relations generate the correct equa- 
tions of motion for the action above. This leads to the creation and annihi- 
lation operator basis for the field 4 of 

where 

Note that on the light one, only positive p+ particles propagate. The vacuum 
has zero p+, and since momentum is conserved, is trivial and has no particles 
in it. (This is true for the vacuum built to any order in perturbation theory. 
In fact the light cone limit is very subtle, and when one is careful to properly 
treat modes that have p+ = 0, these modes can generate non-perturbative 
condensates for the vacuum.) 

To quantize QCD, we work in light cone gauge, A: = 0. The equation of 
motion 

so that 
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The transverse degrees of freedom are quantized as 

If we want to compute the gluon content of the hadron, we compute 

which we recognize as 2 1 7 + / ( 2 ~ ) ~  times the propagator G t u ( p , p ;  z+-y+ -+ 0 )  

5.2 Formal Development: Solving the McLerran-Venugopalan 
Model 

The McLerran-Venugopalan (MV) model involves the computation of the 
classical fields due to  a lightcone current, and then averaging with a Gaussian 
weight over the external current strength. It is the simplest model with the 
physics of saturation built in. Instead of working in light cone gauge, it is 
simplest to first solve the classical equations of motion in the gauge A- = 0, 
and then to gauge rotate the result back to  lightcone gauge. (The action for 
a Gaussian source can be written in a gauge invariant way because all values 
of the sources are integrated over with a gauge invariant measure.) 

The equations of motion in A- = 0 gauge are 

DpF’”” = 6””+p(z-, zT) (53)  

(We overline fields to indicate these are the fields in this gauge which must 
be rotated back to  the light cone gauge. Fields in the light cone gauge will 
not be overlined.) These equations can be solved by the fields 

i A = O  ( 5 4 )  

and 

Note that 
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where U is the gauge rotation between this gauge and light cone gauge. 
Since 

we have that 

-+ i 
A = -Ut(a+U) 

9 

Upon defining 

we see that we can explicitly determine 

The fields in AS = 0 gauge are therefore 

A + = A - = o  

and 

If we choose x- to be outside the range of support of p, then these fields are 
of the simple form 

Ai = B(x-)VViVt (63) 

where 
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5.3 The Gluon Distribution Function in the MV Model 
We can now use the classical fields we determined above to compute the 
gluon distributions function. We have that 

where the < 0 > notation means to average 0 over all values of sources with 
a Gaussian weight. This averaging is straightforward to do for the gluon 
distribution function with the result that [15] (in coordinate space for both 
x- and y- greater than zero) 

The saturation momentum is [59]-[60] 

This equation is true only for XT << l / h ~ c o ,  and also assumes that the 
scale of charge neutralization is the confinement scale. This neutralization 
scale becomes modified to Qs in a more first principles computation and the 
structure of the distribution function is modified for l/RQco 2 XT 2 l/Qs. 
Note that the integral over x- in the definition of the saturation momentum 
can be converted to an integral over space time rapidity and that the charge 
being computes is the total at all rapidities greater than that of the scale of 
interest. One can use the DGLAP evolution equations to relate this directly 
to the gluon density. 

The gluon distribution can now be computed in momentum space using 
the above formulae. One finds that at large p ~ ,  it goes as Q;/a,p$, and at 

Note that the omnipresent factor of l /a ,  arises from the strong gluon fields 
and is typical of condensation phenomena. 

At large p ~ ,  the behaviour as & ? / p ~ 2  is typical of bremstrahlung from a 
number of independent sources characterized by the gluon distribution func- 
tion. At small pT, these sources add together coherently, and the monopole 
nature of the fields strength is canceled. This is because at these pT scales, 

smallpT, it goes as Zn(Q,/pT>/a,. 2 2  The gluon distribution is shown in Fig. 40 
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Figure 40: The gluon distribution function as computed in the Mclerran- 
Venugopalan model. 

the typical separation between sources is less than the scale at which the field 
is measured. 

We expect that the saturation momentum will grow quickly with l /x,  
perhaps a power of 1/x. The tail of the distribution in p~ therefore grows 
rapidly with l /x ,  but below Qs,  the distribution is slowly varying. This be- 
haviour solves the unitarity problem associated with the energy dependence 
of distribution functions. If we measure the number of gluon below some 
resolution scale Q2, 

this goes as nR2Q2 for Q 5 Qs and nR2Q: for Q 2 Qs. So at fixed Q at 
very small x, it will always be true that Q 5 Qs and cross sections will grow 
geometrically. In the MV model, Q: N R, and therefore at large Q 2 Q s ,  the 
cross section grows rapidly and scales as the volume of the system. (In fact 
at very small x it turns out that the renormalization group equations give a 
Qs independent of R, although there is still a rapid increase with energy.) 
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5.4 Hadronic Cross Sections and F’roissart Bound Sat- 
uration 

The Froissart bound is that a total hadronic cross section must satisfy 181-[9] 

at high energy E. This may be simply understood in the language of the 
Color Glass Condensate.[lO]-[ll] Suppose that the saturation momentum 
grows like an exponential in rapidity at small x y N Zn(l/x;). let us also 
assume that the saturation momentum is a function of rapidity and that 
it factorizes into an impact parameter dependent piece and a y dependent 
piece, 

Let us assume that 

At large b, we expect that F ( b )  - e-2mvb, since an isosinglet quantity like 
the gluon distribution function’s large distance effect should be controlled by 
two pion exchange. 

Now if we measure a cross section at some value of Q2, then it better be 
true that the target becomes dark at  an impact parameter which satisfies 

or that the impact parameter where this occurs satisfies 

b - ~y/2m,  (73) 

Therefore the cross section saturates the Froissart bound 

To fill in the details of this argument involves much work and the in- 
terested student is invited to explore the literature where these issues are 
discussed, and are continuing to be argued, in the literature. 

56 



5.5 Geometrical Scaling 
Geometric scaling is the condition that the structure functions for .quarks 
and gluons are functions only of the dimensionless ration Q2/Q:, up to an 
overall factor which carries the overall dimension. [61]-[65] For deep inelastic 
scattering, it is the requirement 

o y p  N F2(x7 Q 2 ) / Q 2  N G(Q2/Q?) (75) 

This condition is obvious when Q2 << Q:, but a surprising result is that it 
is also true up to Q2 5 &:/AicD. This weaker bound can take one to quite 
high values of Q2 at small values of x. 

is shown in Fig. 41 as a function of r = 
Q2/Q: It seems to scale in terms of the saturation momentum. 

The worlds data at x 5 

ZEUS BPT 97 
ZEUS BPC 95 
H1 low Q1 95 
ZEUS+Hl high Q' 94-95 
E665 
xco.01 

311 Q' 

9 

Figure 41: o r e p  as a function of the scaling variable r = Q2/Q3. 
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To understand how geometrical scaling can arise, consider the simple ex- 
ample of the unintegrated gluon distribution function in the double logarithm 
approximation. Here 

The gluon distribution function is the number of gluons per unit area with 
momentum less than Q2. When Q2 N this density is of the order of Q:at, 
as we saw in previous sections. This gives us an equation for the saturation 
momentum 

This predicts a power law dependence upon the x in agreement with phe- 
nomenology. This has a relatively large correction due to running the cou- 
pling constant) but in fact one can compute the saturation momentum’s 
dependence on x in a systematic way and the result) remarkably, agrees with 
phenomenology. 

Now if go back and express A2QcD in terms of QZat, and require that 
Q2 << Qtat/A&D, we find that 

The gluon distribution function acquires an anomalous dimension of 1/2. 
Again this can be done beyond the double logarithmic approximation) and 
one can find the above arguments go through save that the anomalous di- 
mension is a little changed from 1/2, and that the power law dependence of 
the saturation momentum is changed. The interested student is referred to 
the original literature to see this fully developed. 

This result has the consequence that the effects of saturation extend far 
beyond the region of momentum where there is a Color Glass Condensate 
Q2 5 into a new region Q:at 5 Q2 5 Q:a t /A&D.  In this new extended 
scaling region, distribution functions have pure power law behaviour remi- 
niscent of critical phenomena in condensed matter systems. This region has 
been called the Extended Scaling Region and sometime the Quantum Col- 
ored Fluid. A diagram which shows the various kinematic regions is shown 
in Fig. 42. 
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Figure 42: The kinematic regions in the Zn(l/z) - Zn(Qz) plane which corre- 
spond to  Extended Scaling and to the Color Glass Condensate 

5.6 The Renormalization Group 
The result of our considerations for an effective action for the Color Glass 
Condensate gave path integral representation of the form 

In this equation S is the action for the gluon fields in the presence of a light 
cone current described by the charge density p. (To define it properly one 
must provide a manifestly gauge invariant action.) Once one solves for the 
fields in terms of p, then one is required to  average over the source with a 
weight function F [ p ]  which in the Mclerran-Venugopalan model is taken as 
a Gaussian. Implicit in the path integral is a longitudinal momentum cutoff. 
The fields have momenta below this cutoff, and the effect of integrating out 
the fields above the cutoff is included in the source p and the integration over 
various values of p. 

The question arises: How does one determine F[p ]?  It  turns out that 
F is determined by renormalization group equations generated by varying 
the longitudinal momentum cutoff.[14]-[15],[60], [66]-[68] The reason why the 
renormalization group treatment is essential follows from trying to  solve for 
physical quantities, such as the gluon distribution function within the CGC 
approach. In lowest order one computes the classical field associated with 

. 
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the source p, inserts it into an expression for the operator of interest, and 
then averages over p. The lowest order corrections. to this involve Gaussian 
fluctuations around this classical solution. If there is some scale associated 
with the process of physical interest, say p+, one finds that the first order 
corrections are of order asZn(A+/p+), where A+ is the longitudinal momen- 
tum cutoff. The coupling constant a is small because we evaluate it at the 
saturation momentum scale. The quantum corrections to the lowest order 
result are therefore small so long as 

In order to  go to  lower momenta, it is easiest to change the longitudinal 
momentum cutoff to  a smaller value. To do this, we have to integrate out 
the degrees of freedom between the old longitudinal momentum cutoff scale 
and the new one. This can be done in Gaussian approximation since the 
coupling is weak, and so long as the ratio of the various cutoff scales satisfies 
a,Zn(A+/A+') << 1. It turns out that this integration does not change the 
action for the interaction of the gluon fields with the source. All that changes 
is the weight function for integration over the source fields. If we let 

d y  = ln(AS/AS') (81) 

the renormalization group equation becomes 

It turns out that H is second order in d / d p ,  real, and positive semidefinite. 
Therefore H can be interpreted as a Hamiltonian for a 2 + 1 dimensional 
quantum system. 

The Hamiltonian above has an unusual property. If there was a potential 
for the Hamiltonian H with a unique minimum, then the at large times the 
solution of the above equation would tend towards the ground state. In the 
Color Glass Condensate H ,  there is in fact zero potential. The system never 
tends to  the ground state, and there is quantum diffusion. To see how this 
works consider a 1 dimensional example. 
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This has the solution 

As the Euclidean time y increases, the wavefunction spreads, corresponding 
to diffusion. This is unlike the situation where there is a potential 

-2 d = (+ - V(,)) 2 
dY 

(85). 

Here as we evolve in time, the coordinate x settles into the minimum of 
V ,  and has small excursions around it. The solution for 2 becomes time 
independent. 

The consequences of this simple observation are enormous. For the case 
of diffusion, physical quantities are never independent of rapidity, even at the 
smallest values of x. The non-triviality of the small x limit is a consequence 
of the lack of a potential in the renormalization group evolution equation! 

The interested reader is referred to the growing literature on this sub- 
ject for details. Suffice it to say that one can use the renormalization group 
equation above, and the explicit form for H which has been computed to re- 
produce all known renormalization group equations. The explicit form of the 
equations exists, and various approximate solutions have been constructed. 
The picture which results agrees with the phenomenology of small x physics. 
Understanding and solving these equations provides a rich area for future 
research. 
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